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LETTER TO THE EDITOR 

Note on the multipole expansion in the spherical tensor form 

P Piecuch 
Institute of Chemistry, University of WrocIaw, 50-383 Wroclaw, Poland 

Received 16 April 1985 

Abstract. Stone's Cartesian-spherical transformation formalism is used for a simple, direct 
derivation of the multipole expansion in the spherical tensor form starting from the Cartesian 
tensor form. 

Suppose r, is the position vector of particle a with respect to an arbitrary origin A 
and rb the position vector of particle b with respect to origin B. Let R be the vector 
connecting the origins A and B, pointing from A to B, and let rab = R - ra + rb. One 
of the problems in several domains of theoretical physics and chemistry is to expand 
r,-d = lrabl-' as a power series in R-' = JRI-I-the bipolar or multipole expansion. From 
the mathematical point of view the multipole expansion is simply a Taylor series of 
the form (Jansen 1957) 

m 
r ; i=  c (k!)-'[(rb-ra) . V I k ( R - ' )  

k=O 

m w  

= c (-I)'(~!L!)-' c raa ,x  ... x r a a l ~ r b p , ~ .  . . x r b a L  
I =O L=O a1 ... a1 

BI -.BL 
xV, ,  x . . .  xV , ,  x V a l  x . . .  x V , , ( R - ' ) ;  (1) 

this series converges if and only if ( r b -  r,( < R (see, e.g., Amos and Crispin 1976). 
Here V = a/aR and r,,, rbp and Vu, , ,  are the Cartesian components of the vectors r,, 
rb and V. Many different forms of the series (1) may be found in the literature. Several 
authors use a similar multipole expansion in the Cartesian tensor form (Jansen 1957, 
1958, Buckingham 1959, 1967, Kielich 1965a, b, Stogryn 1971) but in many physical 
applications the spherical tensor form of the multipole series is much more convenient. 
For example, it can be helpful in the calculation of the molecular multi-centre integrals 
which appear in quantum chemistry (see, e.g., Steinbom and Ruedenberg 1973 and 
references therein) and it is very suitable for describing long-range electrostatic interac- 
tions between arbitrary charge distributions (Hirschfelder er a1 1954, Rose 1958, 
Fontana 1961, Margenau and Kestner 1971, Wormer 1975, Gray 1976, Wormer et a1 
1977, van der Avoird el a1 1980, Leavitt 1980, Piecuch 1984a, b, c, 1985a, b, Stone and 
Tough 1984). For our purpose we write the spherical tensor form of the multipole 
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expansion as 

where the irreducible tensor product between two sets of irreducible tensors U,,= 
{ u k , q , :  q 1  = - k,, . . . , k,} and v k 2  = { vk2q2: q2 = - k2, . . . , k2} is defined (Fano and Racah 
1959) by 

(here (k,ql ,  k2q2 1 kq) is a Clebsch-Gordan coefficient) while the scalar (inner) product 
is defined (Rose 1957) by 

Here Rim( r )  and IIm( r )  are the regular and irregular solid spherical harmonics defined 
respectively as 

R t m  ( r )  = r'Clm ( 8 9  CP) ( 5 )  

I / m ( r ) =  r - l - ' C l m ( * ,  CO) (6) 

and 

where Clm( 8,q) is an unnormalised spherical harmonic (Brink and Satchler 1968) and 
( r ,  8, cp) are the spherical coordinates of r. In (2) we have used the fact that the sets 
Rl( r )  = { R I m ( r ) :  m = -1,. . . , I} and Z l ( r )  = { Z l m ( r ) :  m = - 1 , .  . . , -1) form irreducible 
tensorial sets of order 1. 

Expression (2) or its special cases (e.g., for R parallel to the z axis of the coordinate 
system) has been obtained previously by several authors (Carlson and Rushbrooke 
1950, Rose 1958, Fontana 1961, Steinborn 1969, Steinborn and Ruedenberg 1973, 
Wormer 1975, Gray 1976, Leavitt 1980, Stone and Tough 1984). However none of 
these derivations is achieved directly from the Taylor series ( l ) ,  although this would 
seem to be the most natural way. Here we wish to derive the spherical tensor form of 
the multipole expansion (2) directly from the Taylor series (1 ) .  Our straightforward 
derivation is based on transforming (1) from the Cartesian to the spherical tensorial 
form via the Cartesian-spherical (cs) unitary transformation introduced by Stone 
(1975, 1976). 

We recall 

and 

We use Stone's notation within the Condon-Shortley phase convention. 
that the cs transformation is defined by 

(jl . . . j ,  ; m I a1 . . . a,) = (a1 . . . a, l j ,  . . . j,; m)* ( 8 )  

where the are the spherical components of spherical rank j ,  of a Cartesian 
tensor T&.am of Cartesian rank n. The subscriptsj,,j2, . . . ,j,-, denote the intermediate 
quantum numbers which are required to distinguish between different spherical tensors 
with the samej,. j ,  is always equal to one and l,jm) (a = 2, . . . , n) satisfy triangle 
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conditions. As examples of relations (7) we can write (Tough and Stone 1977) 

R,m(r)=[(21)!/2’]1/2(I!)-1 1 r , l x . . . x r , , ~ ( ~ l . . . a ~ ~ ~ ~ . . . ~ ; m )  (5a)  

ZIm(r) = (-1)1[2’/(2I)!]1’2 1 vu, x.. . Xvu1(r-l) X(al . . . a[I 1 2 . .  . I; m). (6a)  

U,...,, 

and 

a,...,, 

We consider the mixed scalar product of the three arbitrary Cartesian tensors A,,,..,,, 
and Cul...a,pl...p,, i.e. the expression 

If Ta,...,a,...~, = A , l , , . a , B ~ , , , , ~ ,  denotes the outer product of A,,,.,a, and Bal...p, then (Stone 
1975, 1976) 

...j ,:m = [Aj l . . . j , o B k , . . . k ~ l j , m  
k,...k, 

where t = r + s and W(. . .) is a Racah coefficient (Rose 1957). Since 

SA,, = l...,~l...a,C,,...,,,..., 
a,...u#I...p, 

we have (Stone 1975, 1976) 

S A B c =  x, (-1)’+J~~,. , . j ,  * cJ1... j ,* 
JI-A 

Inserting (10) into (12) we obtain the following general result: 

S A B C =  ,x (-l)‘+”[Aj l . . . j ,~Bk l . . . k , l j ,  ’ qI...j, 
I1 ... it 
kl...k, 

S 

x n {[(2ku+ 1)(2jr+cr-1+ 1)1”’~w(ku-1 l j r j r + u ;  kujr+u-l))r=r+s- (13) 
u = 2  

As a special case of (13) we assume that the Cartesian tensor C,l....al...s, of rank 
t = r + s is symmetric and traceless in each pair of its indices. Tough and Stone (1977 ; 
appendix) have shown that the only non-vanishing spherical components of C,,,..,,,.,,, 
are C12 ...,: ,,, ( m = - r , .  . . , 1 ) .  Thus we have 

S A E C  = [A12 ... r 0 B k  ,...k,]r+s * C12 ... r+s 
kl...k, 

S 

x n { [ ( 2 k u +  1)(2r+2a-  1)]’12 W(IC,_~ 1 r r +  a; kur+ a- 1)). (14) 
u = 2  

From the definition of the irreducible tensor product (3) it follows that [A12...r@ 
Bkl...k,]r+s does not vanish only if ( r ,  ks, r + s )  satisfy the triangle conditions. This 
means that k, 2 s. But kl = 1 and the (kud1, 1, ku) (a = 2, .  . . , s) triangle conditions 
require that k, 6 a. Consequently the summation over k,, . . . , k, in equation (14) 
reduces to the single term satisfying k, = a (a = 1,2, .  . . , s). Since (Rose 1957) 

(15) ~ ( a -  1 1 r r +  a; a r +  U- I )  = [ ( 2 a +  1) (2r+2a-  I ) ] - ” ~  
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we get the following general expression for SA,, when the Cartesian tensor C,,,..,#L...ps 
is symmetric and traceless in each pair of its indices: 

SABC = [A12 ... rO42 ... slr+s C12 ... r + s *  (16) 

Now we use our result (16) to derive (2) directly from (1 ) .  The Taylor series (1) 
can be rewritten as 

where - 
A,, ...a, = raa, X * . . X ram, 

B p I . . . j 3 ~  = rb/3, * * rbSL 
I 

d;ol...n,pl...BL=Va, x . .  * xv,, xvp,  x . .  . X V p , ( W .  

The Cartesian tensor V,, x . . . x V,, x V,, x . . . xV,,( R - ’ )  is symmetric and traceless in 
each pair of its indices (because R-’ is the solution of Laplace’s equation V2f= 0) so 
we can apply (16) to the quantities Sijjc which appear in (17). From ( 5 a )  and (60) 
it follows immediately that 

Substituting (18),  (19) and (20) into (16) we obtain 

If we insert (21) into (17) we get the spherical tensor form of the multipole 
expansion (2). 

We see that Stone’s cs transformation formalism has allowed us to derive the 
spherical tensor form of the multipole expansion in a very natural way, i.e. directly, 
starting from the Taylor series (1). This means that the ingenious cs transformation 
formalism can be treated as a powerful group-theoretical method which preserves the 
conceptual simplicity of Taylor expansion methods. Our derivation of (2) is very 
compact and shows the direct connection between the Cartesian and spherical tensor 
forms of the multipole expansion; these forms are the most popular. The convergence 
criterion for expansion (2), i.e. lrb-fal<K cannot be determined easily from some 
previous derivations of the spherical tensor form of the multipole series. However, in 
our method the convergence criterion for expansion (2) is fulfilled automatically 
because it is valid for series ( 1 ) .  Finally, we note that the general formula (13) and 
its special case (16) can be useful in other physical applications of the spherical tensor 
algebra. 

The author dedicates this work to Professor H Ratajczak for his careful and enlightening 
scientific protection. 
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